3.5.82 \(\int \frac {x^{7/2}}{(-a+b x)^3} \, dx\) [482]

Optimal. Leaf size=97 \[ \frac {35 a \sqrt {x}}{4 b^4}+\frac {35 x^{3/2}}{12 b^3}-\frac {x^{7/2}}{2 b (a-b x)^2}+\frac {7 x^{5/2}}{4 b^2 (a-b x)}-\frac {35 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{4 b^{9/2}} \]

[Out]

35/12*x^(3/2)/b^3-1/2*x^(7/2)/b/(-b*x+a)^2+7/4*x^(5/2)/b^2/(-b*x+a)-35/4*a^(3/2)*arctanh(b^(1/2)*x^(1/2)/a^(1/
2))/b^(9/2)+35/4*a*x^(1/2)/b^4

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {43, 52, 65, 214} \begin {gather*} -\frac {35 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{4 b^{9/2}}+\frac {35 a \sqrt {x}}{4 b^4}+\frac {7 x^{5/2}}{4 b^2 (a-b x)}-\frac {x^{7/2}}{2 b (a-b x)^2}+\frac {35 x^{3/2}}{12 b^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(7/2)/(-a + b*x)^3,x]

[Out]

(35*a*Sqrt[x])/(4*b^4) + (35*x^(3/2))/(12*b^3) - x^(7/2)/(2*b*(a - b*x)^2) + (7*x^(5/2))/(4*b^2*(a - b*x)) - (
35*a^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/(4*b^(9/2))

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n
}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && GtQ[n, 0]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rubi steps

\begin {align*} \int \frac {x^{7/2}}{(-a+b x)^3} \, dx &=-\frac {x^{7/2}}{2 b (a-b x)^2}+\frac {7 \int \frac {x^{5/2}}{(-a+b x)^2} \, dx}{4 b}\\ &=-\frac {x^{7/2}}{2 b (a-b x)^2}+\frac {7 x^{5/2}}{4 b^2 (a-b x)}+\frac {35 \int \frac {x^{3/2}}{-a+b x} \, dx}{8 b^2}\\ &=\frac {35 x^{3/2}}{12 b^3}-\frac {x^{7/2}}{2 b (a-b x)^2}+\frac {7 x^{5/2}}{4 b^2 (a-b x)}+\frac {(35 a) \int \frac {\sqrt {x}}{-a+b x} \, dx}{8 b^3}\\ &=\frac {35 a \sqrt {x}}{4 b^4}+\frac {35 x^{3/2}}{12 b^3}-\frac {x^{7/2}}{2 b (a-b x)^2}+\frac {7 x^{5/2}}{4 b^2 (a-b x)}+\frac {\left (35 a^2\right ) \int \frac {1}{\sqrt {x} (-a+b x)} \, dx}{8 b^4}\\ &=\frac {35 a \sqrt {x}}{4 b^4}+\frac {35 x^{3/2}}{12 b^3}-\frac {x^{7/2}}{2 b (a-b x)^2}+\frac {7 x^{5/2}}{4 b^2 (a-b x)}+\frac {\left (35 a^2\right ) \text {Subst}\left (\int \frac {1}{-a+b x^2} \, dx,x,\sqrt {x}\right )}{4 b^4}\\ &=\frac {35 a \sqrt {x}}{4 b^4}+\frac {35 x^{3/2}}{12 b^3}-\frac {x^{7/2}}{2 b (a-b x)^2}+\frac {7 x^{5/2}}{4 b^2 (a-b x)}-\frac {35 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{4 b^{9/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 82, normalized size = 0.85 \begin {gather*} \frac {\sqrt {x} \left (105 a^3-175 a^2 b x+56 a b^2 x^2+8 b^3 x^3\right )}{12 b^4 (a-b x)^2}-\frac {35 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{4 b^{9/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(7/2)/(-a + b*x)^3,x]

[Out]

(Sqrt[x]*(105*a^3 - 175*a^2*b*x + 56*a*b^2*x^2 + 8*b^3*x^3))/(12*b^4*(a - b*x)^2) - (35*a^(3/2)*ArcTanh[(Sqrt[
b]*Sqrt[x])/Sqrt[a]])/(4*b^(9/2))

________________________________________________________________________________________

Maple [A]
time = 0.11, size = 69, normalized size = 0.71

method result size
risch \(\frac {2 \left (b x +9 a \right ) \sqrt {x}}{3 b^{4}}+\frac {a^{2} \left (\frac {-\frac {13 b \,x^{\frac {3}{2}}}{4}+\frac {11 a \sqrt {x}}{4}}{\left (b x -a \right )^{2}}-\frac {35 \arctanh \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{4 \sqrt {a b}}\right )}{b^{4}}\) \(67\)
derivativedivides \(\frac {\frac {2 b \,x^{\frac {3}{2}}}{3}+6 a \sqrt {x}}{b^{4}}-\frac {2 a^{2} \left (\frac {\frac {13 b \,x^{\frac {3}{2}}}{8}-\frac {11 a \sqrt {x}}{8}}{\left (-b x +a \right )^{2}}+\frac {35 \arctanh \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{8 \sqrt {a b}}\right )}{b^{4}}\) \(69\)
default \(\frac {\frac {2 b \,x^{\frac {3}{2}}}{3}+6 a \sqrt {x}}{b^{4}}-\frac {2 a^{2} \left (\frac {\frac {13 b \,x^{\frac {3}{2}}}{8}-\frac {11 a \sqrt {x}}{8}}{\left (-b x +a \right )^{2}}+\frac {35 \arctanh \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{8 \sqrt {a b}}\right )}{b^{4}}\) \(69\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(7/2)/(b*x-a)^3,x,method=_RETURNVERBOSE)

[Out]

2/b^4*(1/3*b*x^(3/2)+3*a*x^(1/2))-2/b^4*a^2*((13/8*b*x^(3/2)-11/8*a*x^(1/2))/(-b*x+a)^2+35/8/(a*b)^(1/2)*arcta
nh(b*x^(1/2)/(a*b)^(1/2)))

________________________________________________________________________________________

Maxima [A]
time = 0.61, size = 103, normalized size = 1.06 \begin {gather*} -\frac {13 \, a^{2} b x^{\frac {3}{2}} - 11 \, a^{3} \sqrt {x}}{4 \, {\left (b^{6} x^{2} - 2 \, a b^{5} x + a^{2} b^{4}\right )}} + \frac {35 \, a^{2} \log \left (\frac {b \sqrt {x} - \sqrt {a b}}{b \sqrt {x} + \sqrt {a b}}\right )}{8 \, \sqrt {a b} b^{4}} + \frac {2 \, {\left (b x^{\frac {3}{2}} + 9 \, a \sqrt {x}\right )}}{3 \, b^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x-a)^3,x, algorithm="maxima")

[Out]

-1/4*(13*a^2*b*x^(3/2) - 11*a^3*sqrt(x))/(b^6*x^2 - 2*a*b^5*x + a^2*b^4) + 35/8*a^2*log((b*sqrt(x) - sqrt(a*b)
)/(b*sqrt(x) + sqrt(a*b)))/(sqrt(a*b)*b^4) + 2/3*(b*x^(3/2) + 9*a*sqrt(x))/b^4

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 227, normalized size = 2.34 \begin {gather*} \left [\frac {105 \, {\left (a b^{2} x^{2} - 2 \, a^{2} b x + a^{3}\right )} \sqrt {\frac {a}{b}} \log \left (\frac {b x - 2 \, b \sqrt {x} \sqrt {\frac {a}{b}} + a}{b x - a}\right ) + 2 \, {\left (8 \, b^{3} x^{3} + 56 \, a b^{2} x^{2} - 175 \, a^{2} b x + 105 \, a^{3}\right )} \sqrt {x}}{24 \, {\left (b^{6} x^{2} - 2 \, a b^{5} x + a^{2} b^{4}\right )}}, \frac {105 \, {\left (a b^{2} x^{2} - 2 \, a^{2} b x + a^{3}\right )} \sqrt {-\frac {a}{b}} \arctan \left (\frac {b \sqrt {x} \sqrt {-\frac {a}{b}}}{a}\right ) + {\left (8 \, b^{3} x^{3} + 56 \, a b^{2} x^{2} - 175 \, a^{2} b x + 105 \, a^{3}\right )} \sqrt {x}}{12 \, {\left (b^{6} x^{2} - 2 \, a b^{5} x + a^{2} b^{4}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x-a)^3,x, algorithm="fricas")

[Out]

[1/24*(105*(a*b^2*x^2 - 2*a^2*b*x + a^3)*sqrt(a/b)*log((b*x - 2*b*sqrt(x)*sqrt(a/b) + a)/(b*x - a)) + 2*(8*b^3
*x^3 + 56*a*b^2*x^2 - 175*a^2*b*x + 105*a^3)*sqrt(x))/(b^6*x^2 - 2*a*b^5*x + a^2*b^4), 1/12*(105*(a*b^2*x^2 -
2*a^2*b*x + a^3)*sqrt(-a/b)*arctan(b*sqrt(x)*sqrt(-a/b)/a) + (8*b^3*x^3 + 56*a*b^2*x^2 - 175*a^2*b*x + 105*a^3
)*sqrt(x))/(b^6*x^2 - 2*a*b^5*x + a^2*b^4)]

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 695 vs. \(2 (87) = 174\).
time = 105.64, size = 695, normalized size = 7.16 \begin {gather*} \begin {cases} \tilde {\infty } x^{\frac {3}{2}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {3}{2}}}{3 b^{3}} & \text {for}\: a = 0 \\- \frac {2 x^{\frac {9}{2}}}{9 a^{3}} & \text {for}\: b = 0 \\\frac {105 a^{4} \log {\left (\sqrt {x} - \sqrt {\frac {a}{b}} \right )}}{24 a^{2} b^{5} \sqrt {\frac {a}{b}} - 48 a b^{6} x \sqrt {\frac {a}{b}} + 24 b^{7} x^{2} \sqrt {\frac {a}{b}}} - \frac {105 a^{4} \log {\left (\sqrt {x} + \sqrt {\frac {a}{b}} \right )}}{24 a^{2} b^{5} \sqrt {\frac {a}{b}} - 48 a b^{6} x \sqrt {\frac {a}{b}} + 24 b^{7} x^{2} \sqrt {\frac {a}{b}}} + \frac {210 a^{3} b \sqrt {x} \sqrt {\frac {a}{b}}}{24 a^{2} b^{5} \sqrt {\frac {a}{b}} - 48 a b^{6} x \sqrt {\frac {a}{b}} + 24 b^{7} x^{2} \sqrt {\frac {a}{b}}} - \frac {210 a^{3} b x \log {\left (\sqrt {x} - \sqrt {\frac {a}{b}} \right )}}{24 a^{2} b^{5} \sqrt {\frac {a}{b}} - 48 a b^{6} x \sqrt {\frac {a}{b}} + 24 b^{7} x^{2} \sqrt {\frac {a}{b}}} + \frac {210 a^{3} b x \log {\left (\sqrt {x} + \sqrt {\frac {a}{b}} \right )}}{24 a^{2} b^{5} \sqrt {\frac {a}{b}} - 48 a b^{6} x \sqrt {\frac {a}{b}} + 24 b^{7} x^{2} \sqrt {\frac {a}{b}}} - \frac {350 a^{2} b^{2} x^{\frac {3}{2}} \sqrt {\frac {a}{b}}}{24 a^{2} b^{5} \sqrt {\frac {a}{b}} - 48 a b^{6} x \sqrt {\frac {a}{b}} + 24 b^{7} x^{2} \sqrt {\frac {a}{b}}} + \frac {105 a^{2} b^{2} x^{2} \log {\left (\sqrt {x} - \sqrt {\frac {a}{b}} \right )}}{24 a^{2} b^{5} \sqrt {\frac {a}{b}} - 48 a b^{6} x \sqrt {\frac {a}{b}} + 24 b^{7} x^{2} \sqrt {\frac {a}{b}}} - \frac {105 a^{2} b^{2} x^{2} \log {\left (\sqrt {x} + \sqrt {\frac {a}{b}} \right )}}{24 a^{2} b^{5} \sqrt {\frac {a}{b}} - 48 a b^{6} x \sqrt {\frac {a}{b}} + 24 b^{7} x^{2} \sqrt {\frac {a}{b}}} + \frac {112 a b^{3} x^{\frac {5}{2}} \sqrt {\frac {a}{b}}}{24 a^{2} b^{5} \sqrt {\frac {a}{b}} - 48 a b^{6} x \sqrt {\frac {a}{b}} + 24 b^{7} x^{2} \sqrt {\frac {a}{b}}} + \frac {16 b^{4} x^{\frac {7}{2}} \sqrt {\frac {a}{b}}}{24 a^{2} b^{5} \sqrt {\frac {a}{b}} - 48 a b^{6} x \sqrt {\frac {a}{b}} + 24 b^{7} x^{2} \sqrt {\frac {a}{b}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(7/2)/(b*x-a)**3,x)

[Out]

Piecewise((zoo*x**(3/2), Eq(a, 0) & Eq(b, 0)), (2*x**(3/2)/(3*b**3), Eq(a, 0)), (-2*x**(9/2)/(9*a**3), Eq(b, 0
)), (105*a**4*log(sqrt(x) - sqrt(a/b))/(24*a**2*b**5*sqrt(a/b) - 48*a*b**6*x*sqrt(a/b) + 24*b**7*x**2*sqrt(a/b
)) - 105*a**4*log(sqrt(x) + sqrt(a/b))/(24*a**2*b**5*sqrt(a/b) - 48*a*b**6*x*sqrt(a/b) + 24*b**7*x**2*sqrt(a/b
)) + 210*a**3*b*sqrt(x)*sqrt(a/b)/(24*a**2*b**5*sqrt(a/b) - 48*a*b**6*x*sqrt(a/b) + 24*b**7*x**2*sqrt(a/b)) -
210*a**3*b*x*log(sqrt(x) - sqrt(a/b))/(24*a**2*b**5*sqrt(a/b) - 48*a*b**6*x*sqrt(a/b) + 24*b**7*x**2*sqrt(a/b)
) + 210*a**3*b*x*log(sqrt(x) + sqrt(a/b))/(24*a**2*b**5*sqrt(a/b) - 48*a*b**6*x*sqrt(a/b) + 24*b**7*x**2*sqrt(
a/b)) - 350*a**2*b**2*x**(3/2)*sqrt(a/b)/(24*a**2*b**5*sqrt(a/b) - 48*a*b**6*x*sqrt(a/b) + 24*b**7*x**2*sqrt(a
/b)) + 105*a**2*b**2*x**2*log(sqrt(x) - sqrt(a/b))/(24*a**2*b**5*sqrt(a/b) - 48*a*b**6*x*sqrt(a/b) + 24*b**7*x
**2*sqrt(a/b)) - 105*a**2*b**2*x**2*log(sqrt(x) + sqrt(a/b))/(24*a**2*b**5*sqrt(a/b) - 48*a*b**6*x*sqrt(a/b) +
 24*b**7*x**2*sqrt(a/b)) + 112*a*b**3*x**(5/2)*sqrt(a/b)/(24*a**2*b**5*sqrt(a/b) - 48*a*b**6*x*sqrt(a/b) + 24*
b**7*x**2*sqrt(a/b)) + 16*b**4*x**(7/2)*sqrt(a/b)/(24*a**2*b**5*sqrt(a/b) - 48*a*b**6*x*sqrt(a/b) + 24*b**7*x*
*2*sqrt(a/b)), True))

________________________________________________________________________________________

Giac [A]
time = 0.72, size = 81, normalized size = 0.84 \begin {gather*} \frac {35 \, a^{2} \arctan \left (\frac {b \sqrt {x}}{\sqrt {-a b}}\right )}{4 \, \sqrt {-a b} b^{4}} - \frac {13 \, a^{2} b x^{\frac {3}{2}} - 11 \, a^{3} \sqrt {x}}{4 \, {\left (b x - a\right )}^{2} b^{4}} + \frac {2 \, {\left (b^{6} x^{\frac {3}{2}} + 9 \, a b^{5} \sqrt {x}\right )}}{3 \, b^{9}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(7/2)/(b*x-a)^3,x, algorithm="giac")

[Out]

35/4*a^2*arctan(b*sqrt(x)/sqrt(-a*b))/(sqrt(-a*b)*b^4) - 1/4*(13*a^2*b*x^(3/2) - 11*a^3*sqrt(x))/((b*x - a)^2*
b^4) + 2/3*(b^6*x^(3/2) + 9*a*b^5*sqrt(x))/b^9

________________________________________________________________________________________

Mupad [B]
time = 0.14, size = 83, normalized size = 0.86 \begin {gather*} \frac {\frac {11\,a^3\,\sqrt {x}}{4}-\frac {13\,a^2\,b\,x^{3/2}}{4}}{a^2\,b^4-2\,a\,b^5\,x+b^6\,x^2}+\frac {2\,x^{3/2}}{3\,b^3}+\frac {6\,a\,\sqrt {x}}{b^4}+\frac {a^{3/2}\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {x}\,1{}\mathrm {i}}{\sqrt {a}}\right )\,35{}\mathrm {i}}{4\,b^{9/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-x^(7/2)/(a - b*x)^3,x)

[Out]

((11*a^3*x^(1/2))/4 - (13*a^2*b*x^(3/2))/4)/(a^2*b^4 + b^6*x^2 - 2*a*b^5*x) + (2*x^(3/2))/(3*b^3) + (6*a*x^(1/
2))/b^4 + (a^(3/2)*atan((b^(1/2)*x^(1/2)*1i)/a^(1/2))*35i)/(4*b^(9/2))

________________________________________________________________________________________